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ABSTRACT

:A collocation method for evaluating integrals of rapidly oscillating

functions is analyzed. The method is based on the approximation of the

antiderivative of the integrand as the solution of an ordinary differential

equation via polynomial collocation. Numerical examples are presented.
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SIGNIFICANCE AND EXPLANATION

Special integration methods have to be used for the integration of highly

oscillatory functions. In the present paper we describe such a method and

determine the order of convergence.
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ANALYSIS OF AN INTEGRATION METHOD FOR RAPIDLY OSCILLATING INTEGRANDS

D. Levin*, L. Reichel and C. Ringhofer

I. INTRODUCTION

In (3] a collocation method for computing integrals with rapidly oscillatory

integrands was presented, and numerical examples indicated fast convergence. In the

present paper, we analyze the method, show convergence rates, and discuss the choice of

collocation points.

We are to compute integrals at the form

(1.1I = b f(x)eiq(x)/Edx,
a

where - < a < b ( -, i - 41, q(x) is a real-valued function, f(x) is a complex-

valued function and C is a constant 0 < C 4 b - a. We assume that f(x) and q(x)

vary moderately on [a,b]. Specifically, we assume there are constants 61,62 such that

0<6 8 AS (x)l 6 and 8 ) E holds. The integration method is based on the

observation that if a function p(x) satisfies

d iq(x)/e iq(x)/E
(1.2) dx (p( x) ) " f(x)ei / a C x C b

then the integral is given by
(1.3) - p(b)e iq(b)/c - p(l

q a)/£

From (1.2) it follows that p(x) is any solution of

(1.4) p'(x) +. q'(x)p(x) - f(x), a 4 x 4 b

Equation (1.4), we solve by approximating p(x) by piecewise polynomials, which we

determine by collocation. Details as well as convergence results are provided in Section

2. Section 3 contains numerical examples.

*School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, Israel
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2. COMRGENCE PROPERTIUS

Let a = z < z2 < ... < Zm 1 " b be a partition of (a,b], and for notational

convenience assume that all zj are equidistant with

(2.1) h :- b - Z:+l - - In

and h8 1 3 E. on each subinterval (zj+lzj], we approximate p(x) by a k-th degree

polynomial, which we determine by collocation in k + 1 points. This gives us a

convergence order of O(c2 h k-1), and as example 2.1 below shows, this result is sharp.

From lemma 2.1 below it follows that III = 0(e), why the relative accuracy of the method

is 0(chk-1). We next describe the collocation method. Choose k + I reference points

wji 0 - w0 < w 1 < ... < wk = 1. The collocation points wJ in [z+j,z j ] , we obtain by

the linear map

(2.2) wJ - zj + hwv, s - O(1)k, j - 1(1)m

Let I (x) be the Lagrange polynomials defined by w(1)k, i.e.

nj wa - 01kie

k x - w
)

a
(2.3) n,j(x) : ,0)k

s=0 v j - w
s*n n 8

Determine the polynomial

k
(2.4) p (x) = 1 0 ani Inj(x)

from

(2.5) p;(x) +. q'(x)pj(x) = f(x), x = 0' 1'" "' k

The computed pj(x) approximates p(x) on [zj,zj+ 1]. Analogously to (1.3)

kiq(zj+ )/C iq( z )/c

(2.6) 
T = p (zJ+j) e 

- pi(z )e

is an approximation of J f(x)e q(x)/ dx, and

zi

rk m+1

(2.7) k 1 :

approximates I.

-
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Theorem 2.1

Let T, 1
k
, h, pj etc. be defined by (1.1) and (2.1)-(2.7). Then

II - I ki c CC2h 
k
-I

where c is a constant independent at C and h.

To proove theorem (2.1) we first need some additional lemmas: As we will see it is

essential for our method that there exists a sufficiently smooth solution of (2.5), i.e.

that there exists a solution which has sufficiently many derivatives bounded uniformly as

e goes to zero. This is shown in

Lema 2.1
2 K
'-1 2K

t f(x) e c zzJ and q(x) e C [z ,z I. Then there is a solution v(x)

ii(2.8) v'(x) + £ (xv =) f(x), ..j ( x €z+

which satisfies

(2.9) I
d
a
v (x)I 4 cc on [zjzj. 1 1  8 0(1)K

dx 8

where c is a constant independent of C.

Proof. Let
K

v (x) : ) v(x)s
s-i

f(x) vs-l1X)

hen v satisfies

vI(x) + - q'(x)v (x) - f(x) + e k v (x)
K IC K

and

d~v

C- 8 x) - 0(C), z G x 4 ZJ+lj a O-(11.
dx-

v(x) :- V C:i( z)/Z(j/ + -i Jx/ eXiqltl/cf(t)dt

zi

II



solves (2.8). Introduce e(x) :- v(x) - V (x). Then

± k
e'(x) + - q'(x)e(x) - v'(x)E , e(z ) - 0

Then e(x) can be written as

(2.10) e(x) = K -iqx)/e Jx e iq(t)/Ev,(t)dt
zzj

From
x eiq(t)/Cv(t)dt - OW(), zj ( x 4 zJ+ 1

zi

it follows that e(x) - O(C
K+ ) 

on [zjozj+l]. Repeated differentiation of (2.11) shows

that d a x) is at most (CC ), a = 0C1)K. By construction V (x)C
-  

has K

dx
5  1C

derivatives bounded independently of c. The lemma follows from v(x) - V x) + e(x).

Remark 2.1

The smoothness requirements on f(x) and q(x) are only sufficient. It is simple to

construct functions where v(x) has more continuous derivatives than f(x) and g(x).

See section 3.

Next we estimate the error in Ik (see (2.6)) on each subinterval [zj,zj+l]. tat

v(x) solve (2.8). Then

ZJ+1IJ f(x)eiq(x)/£ 
d - Ik1 -

zi
iq(z +)/C iq(z )/C

(2.11) = I(v(zJ+ 1) p1(2J+1))e - (v(zj) - p(zj))e iz V 4

' Iv(zj+ 1) - pj(zj+1 )l + Iv(zj) - pj(zj)l

Hence, it suffices to bound v(x) - pj(x) of zi and zj+ I.

Loma 2.2

Let v(x) and pj(x) have the same meaning as in (2.11). At the collocation

points w , 5 - O(1)k, in [zj,zj+Ij, (see (2.2))

-4-



(2.12) Iv(WI) " p (W,)l '( cc max Ir"i
a j (s(k

holds where c is a constant independent of C and h, and the ra are defined as

follows, let pj(x) be the polynomial of degree 4 k satisfying wjC) I V(w I

a - O(1)k. We define r5  as the residuals

(2.13) r s- v'( - ) 5 I)k

Proof

With the representation (2.4) of pj(x), the collocation equations (2.S) become

1

(2.14) (L + D)a-f,

where

D) a I diag~iq'(v ),iq' (w ),.....iq' (w ))

.0 ki 0

( . ( ,i) ... , C I
\ j kc kj kc

f

(2.15) (L + f l)v = f + r,
where r - (r0,rh,...,rk)

T
. Sinca the elements of L are 0(), fq'

> 
6 and .. 6,h

1the matrix L a n D is inverible, and

80 W

Ths p(rL + )s -e f + r

This proves the lemma.



The next lemma bounds r. The result is well-known and a simple proof by Polls's

theorem is omitted.

Lemma 2.3

Let p(x) be the polynomial of degree ( k that interpolates qx) e Ck+1 ZJ~zJ+1)

at points wj v j  ..,Wk. Then for any x e (%jzj+,]O0 1" k

I;'(x) - q'(x)f 4 chk max dk+lx
z C 4x-z J dxSj xj+1 (x

l ',

where c is a constant independent of h.

We are now in a position to give an estimate for the integration error for one

subinterval.

Theorem 2.2

Let 1 be defined by (2.6), and assume that f(x) and g(x) satisfy the smoothness

requirements of lem 2.1. Then

k + q(x)/c 2 k
(2.16) 1%-i f(x)e dxl -cth

Zj

where c is a constant independent of C and h.

Proof. Taking the smooth solution of lemma 2.1 with K = k + 1, its k + 1st derivative

in continuous and 0(C). By lemma 2.3, re introduced in lemma 2.2 satisfies

max Ir 5  cch for some constant c independent of E and h. Therefore the theorem

follows by (2.11) and (2.12).

The proof of theorem 2.1 is now trivial. It follows from theorem 2.2 and summation

over all m - (b - a)/h subintervals. The following example shows that the error estimate

of theorem 2.1 is sharp if C C h 1

Sx. 2.1 Consider the integral

I elic x/c dx•

0

Divide [0,J] into m subintervals tzj.zj,+1  of length h : 1/a, i.e. z= hj,

.-6



J - O(1)m. For future reference, we write I as

m-1 zJ1 (ee ih /€  1 z. ia/C3

(2.17) - m-i ix/Cdx " C I e z i- z ii /C

J=0 zj j=0

We apply our integration method with k I 1 on each subinterval fzj,zj+l]. We determine

a linear function

p (x) d + dj

j Oj h ij h

which satisfies

p;(ze )  t (zs ) "' + Izp Ca)=- p ( , a - j,j + 1.

This determines

m-1 iz j + I /C izi/C

11 -= 1 (e dij- e d0 j)

which after some simplification can be written as

h M -1) iz/

(2.18) 1 -e hC +C2e eW sJ/

with (2.17) this gives

I 
-£  (ehei

h /C 1 + C2 e 
h  I (ih/C - - X) ee i z /A

(2.19) 1 c 1)) m(e a1h ih-I

The sum in (2.19) is bounded by 0(1/h), and therefore

1 1 - I( 0 0(V 2 ) + O(C3/h)

From (2.19) it is obvious that theorem 2.1 qives a bound for the decay of the error, while

the error itself might not tend to zero smoothly as h 4 0 or C 4 0. This is also

illustrated by the numerical examples of section 3.

-7-



We conclude this section with a suggestion for collocation points. In the proofs we

have only required that the collocation points are distinct on each subinterval

[zjzj,+] and that the end points of each subinterval are collocation points. While the

allocation of collocation points does not affect the rate of convergence I I as

h + 0 or as C + 0, the allocation does affect the constant c in (2.16) and in theorem

2.1. Let D denote the differentiation operator, and write (2.8) symbolically as

(I + - D)v - Cf( l + i ' i q o

or equivalently, if £ is sufficiently small and f is sufficiently smooth,

(2.20) v - (I + "- D) - f - - f + - f. + - f" +
iqe Yq' iq' (q,)2 i(q') 3

This shows that the polynomial pj(x) we determine by (2.5) is close to the kth degree
I £ (),adi ugssteu

polynomial p (x) which interpolates -- f at w 1  a and it suggests the us,
jiq 9

of collocation points wi, which are good for the interpolation problem

p (w f( ,)(q(w s - 0(1)k. If w select the w as the extended Chebyshev

points

w (Z + z - (z - z ) cos((21 + 1)w/(2k + 2))) 0(1)k

(2.21) : j J+1 i J+1 cos(i/(2k + 2)) =

I )-1

then p (x) will be close to the best polynomial approximant to j f(x)(g'(x)) , see

de Door [I, ch. 2 or Brutman (2). The examples of section 3 confirm that the extended

Chebyshev points also are qood for solving the collocation problem (2.5).



I

3 . NUMERICAL EXAMPL

in all examples the interval is (0,11. The m subintervals fzj,zj,+ 1  are defined

by zj - hit h - - J - 0(1)m. k denotes the degree of the polynomial pj(x). If

nothing else stated, the collocation points { w!k0 are the extended Chebyshev points

(2.21). All computations were done on a VAX 11/260 in double precision arithmetic, i.e.

with 12 significant digits.

Ex. 3.1 Let q(x) :- x + x2  
and

1 + 2x 2x- 1
(X - 0.5)2 + 0.1 ((x - 0.5)2 + 0.1) 2

Then (1.4) is solved by p(x) -((x - 0.5)
2 + 0.1) 

1
. The table shows the dependence of

-" Ik' on h and on C.

-9-



h kIk (rounded) 11 Ik

1 5 10 - 3  -3.9093 * 10
- 3 + 2.6642 * 10-

3
1 7.3 10

- 6

1/2 5 10
-3  -3.9070 - 10

- 3 
+ 2.6573 10"3i 1.4 10

- 6

1/4 5 10
- 3  5.0 10 -

8

1/8 5 10
- 3  

- 4.7 10- 9

1/16 5 10
3  1.7 - 10-10

5 106 -6.9997 * 10-
7  

1.8735 . 10-
6 1 1.0 - 10-11

1/2 5 10
6  1.5 • 10

-
12

1/4 5 10
-6  8.8 • 10

- 14

1/8 5 10-6 3.7 • 10
1 5

1/16 5 10
- 6 2.3 • 10

- 16

1/2 20 10
-3  -3.9070 ° 10-3 + 1.6573 * 10-3 2.9 • 10

- 14

1/2 20 10
- 3  -6,9997 - 10

-7 
- 1.8735 - 10-

6
i 1.4 * 10

- 19

1/2 20* 10
-3  -3.9070 - 10

-3 
+ 2.6573 - 10-3i 1.3 • 10

-
11

*equidistant collocation point

we note that high accuracy can be obtained not only by decreasing h, but also by

increasing k. The latter strategy can be competitive since the strong diagonal dominance

of system (2.14) allows iterative solution in O(k
2
) operations.

Ex. 3.2 Let g(x) :- x + x2 and f(x) :- (1+2x)(x --- ) 2 signx--)i- 2sxi-(1.

121 /2 V/2 v2
Th n p(x) xC - - s) ign(x - -) solves (1.4).

/2 /2

-10-



h kI
k 

(rounded) 1I -I

1/8 2 10
- 3  4.6847 * 10-

4 + 7.9750 * 10-5i 3.63 108

1/16 2 10 -  4.6849 j 10 - 4 + 7.9770 * 10"5 1.85 10

1/4 8 10
- 3  4.6848 * 10-4 ., .9788 * 105i 4.47 * 10-

9

1/8 8 10
-3  4.6848 * 10

-4 
+ 7.9783 * 10-

5
1 2.74 * 10

- 9

1/4 8* 10
- 3  

4.6849 , 10-
4 

+ 7.9809 * 10-5i 2.9 108

*equidistant collocation points.

The example shows the robustness of the method.

The last example shows that the conditions of leima 2.1 are not necessary.

Ex. 3.3 Let q(x) - Ix - - and define q' ) 0. t/2

f(x) :"I'x)i -2x - I

2 2 2(x -05)
2 

+ 0.1 ((x -0.5)
2 

+ 0.1)
2

Then p(x) is the same as in Example 3.1.

Ik (rounded) -

1/8 5 10
-3  6.3105 * 10

- 
- 1.1924 * 10-31 6.0 - 10

-9

1/16 5 10
- 3 " 9.3 * 10

1 1

-11-
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